COMFORT COOLING

TOWARDS A GREEN FUTURE

BY

NIRMAL GUPTA

DIRECTOR

GUPTA CONSULTANTS & ASSOCIATES

<u>DESIGN GOALS</u>

- > HIGH LEVEL OF COMFORT.
- DUST PROOFING THE BUILDINGS.
- COST EFFECTIVE SYSTEM SOLUTIONS.
- > MINIMUM ENERGY CONSUMPTION.
- > ECO FRIENDLY DESIGNS.
- > ACHIEVING ACCEPTABLE LEVEL OF COMFORT WITHOUT CONVENTIAL AIR-CONDITIONING.

CONCEPT OF COMFORT COOLING

COMFORT ZONE AS DEFINED BY ASHRAE:

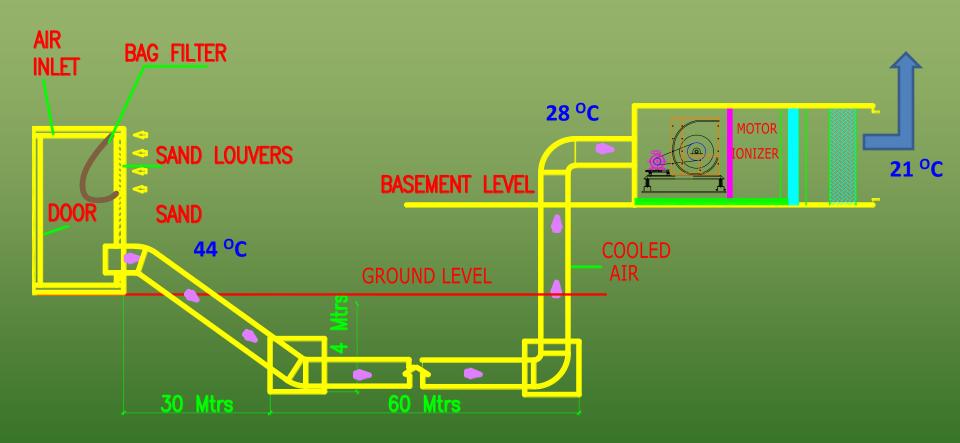
	•	AIR CONDITIONING	COMFORT COOLING
1.	Temperature	22 C 2 C	26 C - 29 C
2.	Relative Humidity	Below 60 %	Up to 60 %
3.	Air Movement	50 to 100 FPM (0.75 to 1.5 m/sec)	Max. 40 FPM (Max. 0.2 m/sec)

4. Comfort Cooling Based on Displacement Ventilation

DEVELOPING THE CONCEPT

- > DESIGN THE BUILDING TO MINIMISE COOLING NEEDS.
- > ADD INSULATION / SEALED WINDOWS WITH SINGLE / DOUBLE GLASS.
- > FOCUS ON REDUCING:-
- *** ENVIRONMENTAL DAMAGE**
- ENERGY CONSUMPTION
- **❖ WATER CONSUMPTION**
- MAXIMUM COMFORT WITHOUT REFRIGERANT EXCEPT IN MONSOON.
- ADOPTING INNOVATIVE TECHNOLOGIES TO REDUCE AIR FLOW.

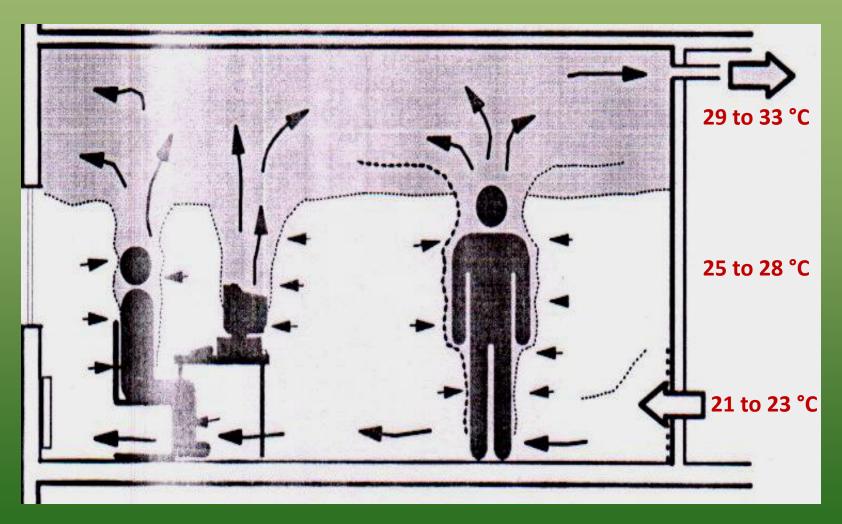
RESULTANT PROCESS FOR COMFORT COOLING


A COMBINATION OF:

- EARTH AIR TUNNEL.
- > EFFICIENT EVAPORATION COOLING.
- > AIR DISTRIBUTION USING DISPLACEMENT VENTILATION.
- > SYSTEM CAPABLE OF PROVIDING 26 °C TEMP. INSIDE WITH OUTSIDE TEMP. AROUND 44 °C.
- > USE OF CHILLER WITH CFC FREE REFRIGERANT TO DEHUMIDIFY AIR IN MONSOON.

<u>METHOLOGY</u> (COMFORT COOLING)

- 60 TO 90 M EARTH AIR TUNNEL (EAT).
- TO COOL AIR DOWN TO 20 / 30 °C FROM UP TO 46 °C.
- EVAPORATIVE UNIT TO REDUCE TEMP. TO 20 °C / 21 °C.
- SUFFICIENT AIR FLOW WITH 8 AIR CHANGES TO ACHIEVE INSIDE TEMP. OF 26 / 27 °C.
- COMFORT POSSIBLE DUE TO USE OF DISCPLACEMENT VENTILATION, WHERE ALL AVAILABLE AIR FLOW MOVES OVER HEAT SOURCES – PEOPLE - EQUIPMENT.
- VARIABLE FREQUENCY DRIVE TO ADJUST AIRFLOW AS PER REQUIREMENT.


SYSTEM DIAGRAM COMFORT COOLING

<u>TEMP. OF EARTH REMAINS CONSTANT AT APPROX. 4 METERS.</u>

<u>HENCE – COOLING AIR IN SUMMER & HEATING AIR IN WINTER.</u>

AIR PATTERN OF DISPLACEMENT VENTILATION

COLD AIR CAN BE SEEN RISING OVER PEOPLE & COMPUTER

BENEFITS

- > EAT REDUCES WATER CONSUMPTION BY 50%.
- > AVOIDS ADDITION OF MOISTURE DUE TO EVAPORATION
- REDUCES OPERATING ENERGY BY 60% COMPARED TO AIR-CONDITIONING SYSTEM.
- REDUCED ADDITION OF HEAT & MOISTURE TO ENVIRONMENT AS REFRIGERATION USED FOR 2 MONTHS ONLY.
- > SUPERIOR INDOOR AIR QUALITY DUE TO 100% FRESH AIR.
- > CAPITAL COST OF SYSTEM SAME AS A.C.
- OPERATING COST ONLY 40% OF A.C.

CASE HISTORY

- NIIT UNIVERSITY NEEMRANA, RAJASTHAN
- AREA CONDITIONS TWO WINGS OF ACADEMIC BLOCK
 - ONE NINE STORY HOSTEL BLOCK
- EQUIPMENT INVOLVED:-
- **❖** ACADEMIC BLOCK 8 NOS. EARTH AIR TUNNELS AND 8 NOS. AIR HANDLING UNITS TOTALING 1,20,000 CFM.
- **♦ HOSTEL BLOCK 5 NOS. EARTH AIR TUNNELS AND 5 NOS. AIR HANDLING UNITS TOTALING 75,000 CFM.**
- **COMMON TWO COMMON CHILLERS FOR MONSOON TOTALLING 200 TR.**
- **❖** BMS TO OPERATE THE SYSTEM AND COLLECT VALUE DATA ON SYSTEM PERFORMANCE
- OPERATING COST 40% COMPARED TO A.C.
- > RESULT INSIDE TEMP. NOT EXCEEDING 27 °C EXCEPT IN MONSOON.

THANK YOU